
GESwarm: Grammatical Evolution for the Automatic
Synthesis of Swarm Robotics Collective Behaviors

Author 1
Some lab

something@mail.com

Author 2
Some lab

something@mail.com
Author 3
Some lab

something@mail.com

Author 4
Some lab

something@mail.com

ABSTRACT
In this paper we propose a novel methodology for auto-
matically synthesizing collective behaviors for swarms of au-
tonomous robots. This methodology automatically derives
the microscopic rules and interactions among robots needed
to achieve the desired macroscopic behavior. Evolutionary
robotics typically relies on artificial evolution for tuning the
weights of an artificial neural network that is then used as
microscopic behavior representation. The main caveat of
neural networks is that they are very difficult to reverse en-
gineer, meaning that once a suitable solution is found, it is
very difficult to analyze, to modify, and to tease apart the
inherent principles that lead to the desired collective behav-
ior.

In this paper we propose GESwarm, a novel tool that,
paired with artificial evolution, is used to automatically syn-
thesize completely readable and analyzable microscopic rules
that lead to the desired macroscopic collective behavior. The
core of our method is a grammar that can generate a rich va-
riety of collective behaviors. We test GESwarm by evolving
a foraging strategy using a realistic swarm robotics simula-
tor. We then systematically compare the evolved behavior
against a hand-coded behavior for performance, scalability
and flexibility, and show that GESwarm systematically out-
performs the hand-coded one.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Distributed Artificial Intelligence; I.2.9 [Computing Method-
ologies]: Artificial Intelligence—Robotics; I.2.8 [Computing
Methodologies]: Artificial Intelligence—Problem Solving,
Control Methods, and Search

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM TBA ...$15.00.

Keywords
swarm robotics, evolutionary robotics, genetic programming

1. INTRODUCTION
Swarm robotics is the study and the design of collective

behaviors for swarms of autonomous robots [?, ?]. The de-
sired collective behavior is the result of local interactions
among robots and between robots and the environment. The
goal in swarm robotics is to design collective behaviors that
are flexible (to different environments), robust (to robot fail-
ures) and scalable (to different swarm and problem sizes).
Swarm robotics relies on principles such as self-organization
and local interaction rather than on centralized coordina-
tion and global communication. Despite all these advan-
tages, swarm robotics suffers from the so-called design prob-
lem [?]: given the desired macroscopic collective behavior,
it is not trivial to design the corresponding microscopic be-
haviors and interaction rules.

Several approaches have been proposed to tackle the de-
sign problem in swarm robotics. A common approach is to
use automatic design methods to derive automatically mi-
croscopic behaviors and interactions given some macroscopic
description of the collective behavior or task [?]. Evolution-
ary robotics [?] is the most commonly used automatic de-
sign framework in swarm robotics. In evolutionary robotics,
evolutionary algorithms are used to find collective behaviors
that maximize a fitness function, which is used to evaluate
the performance of the entire swarm. To represent the mi-
croscopic behavior of an individual robot, artificial neural
networks (ANNs) are typically used, which directly map the
robots’ sensory inputs into actuators values. Despite their
generality, ANNs suffer from a major drawback: they con-
sist of black-box models of individual behaviors that, once
obtained, are very difficult to reverse engineer. Thus, it is
not easy to either obtain insights on the evolved principles
responsible for the self-organized collective behavior or to
modify the latter in order to comply with different require-
ments.

In this paper, we make a step forward into the realiza-
tion of an automatic design tool for swarm robotics able to
produce analyzable and modifiable collective behaviors. We
propose GESwarm, a method based on Grammatical Evolu-
tion (GE) [?] with a novel generative grammar that is able
to synthesize a rich variety of swarm robotics collective be-
haviors. In GESwarm, it is possible to provide a set of low
level individual behaviors, well tested in simulation and po-

tentially also on real robots, that through artificial evolution
are combined until more complex behaviors are generated.
The evolved behavior is a set of rules responsible for switch-
ing from one low level behavior to another in response to
internal states and local environmental conditions. These
evolved rules can be easily read, analyzed and modified due
to their intuitive representation.

We present a case study of foraging task as validation for
this method. Robots have to collect objects present at a
source location and drop them at the goal location. After
analyzing the evolutionary performance of the algorithm, we
perform systematic experiments in which we compare the
evolved behaviors against a hand-coded one. Additionally,
we perform experiments in different conditions than the ones
used during evolution, showing that the evolved behavior
generalizes well.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces GESwarm. Section 3 presents the experi-
mental setup and the results of our experiments. Section 4
presents a discussion in which we enframe GESwarm in
the literature of automatic design methodologies for swarm
robotics. In Section 5, we conclude the paper and we discuss
possible future directions.

2. GESWARM
GESwarm combines concepts derived from three different

disciplines: formal language theory [?], evolutionary com-
putation [?] and swarm robotics [?]. The space of strings
of a formal grammar are used as the search space for the
evolutionary algorithm. These strings represent an abstract
syntax tree which is used as the controller for the robots.
A GA is used to evaluate the collective behaviors produced
out of these individual behaviors, until a solution with good
performance is found. These strings represent a set of rules
that are used to combine behaviors taken from a repertoire
of low-level swarm robotics behaviors.

In this section we provide details on how this process is
carried out: first we explain the type of behavioral represen-
tation that can be generated by the grammar (Section 2.1),
then we describe the GESwarm grammar and how it can
generate such behaviors through evolution (Section 2.2).

2.1 Behavioral representation
We assume that each robot in the swarm is executing the

same behavior. Each evolved behavior is a set R composed
of an arbitrary number nR of rules Ri:

R = {Ri} , i ∈ {1, . . . , nR}.

Each rule has the following form:

Ri = Pi × Bi ×Ai,

that is, is composed of an arbitrary number of preconditions
Pj ∈ Pi, behaviors Bk ∈ Bi and actions Al ∈ Ai, with
j ∈ {1, . . . , niP }, k ∈ {1, . . . , niB}, l ∈ {1, . . . , niA}. The
intuitive interpretation of a rule is: if all the preconditions in
Pi are met, and if the robot is executing any of the behaviors
contained in Bi, all actions contained inAi are executed. We
now explain what preconditions, behaviors and actions are.

A precondition Pj is something that can be true or false
about the environment. Currently, GESwarm allows for
boolean preconditions, but can be extended to include pre-
conditions comparing variables to natural numbers. Exam-
ple of preconditions are: PON AREAX (which is true if the

robot is on top of a given area AREAX and false otherwise),
PSEES OBSTACLE (which is true if the robot sees obstacles
close-by or false otherwise), PIS CLOSE TO(k) (which is true
if the robot sees k objects or other robots and false other-
wise), etc. Preconditions are meant to be simple sensorial
pre-processing steps, depending on the available robot tech-
nology. For the experiments in this paper, and to be faithful
to the swarm robotics philosophy, we only use preconditions
that can be implemented using the on-board sensors of the
robots we considered. The precondition of rule Ri, is as-
sumed to be the conjunction

∧
P∈Pi

P (logical “and”) of all

preconditions in Pi, that is, rule Ri is activated (and the
corresponding actions executed) only if all preconditions are
met. Consistent with the above definition, if the set of pre-
conditions is empty (Pi = ∅), the precondition is assumed
to be satisfied.

A behavior Bk is a low level primitive that a robot can
execute for a given amount of time. Examples of low level
behaviors are: BPHOTOTAXIS (the robot moves in the di-
rection of the highest light intensity), BRANDOM WALK (the
robot executes a directed random walk), BFOLLOW COLOR(c)

(the robot moves in the direction of a given color c, which
could be static or signaled by other robots), etc. In a rule
Ri, Bi can contain more than one behavior. Rule Ri is ac-
tivated only if the robot is executing any of the behaviors
in Bi. If the set of behaviors is empty (B = ∅), the rule is
considered activated regardless of the behavior the robot is
currently executing.

Each action Al is associated with a probability value pl.
Allowing probabilistic actions has been extensively used in
swarm robotics in order to increase flexibility [?, ?]. Pro-
vided that preconditions Pi are met and the robot is execut-
ing one of the behaviors in Bi, the action is executed with
probability pl in any given timestep. Delayed execution of
actions is achieved by values of pl smaller than 1. Actions
can be one of two types. The first type is behavior change, or
AB . With AB actions, the robot can switch from one behav-
ior to another. Therefore, AB actions are always followed
by an argument indicating the behavior to switch to. The
other type is internal state change, or AIS . These actions
are used to either produce some immediate response by the
robot (i.e. turning on its LEDs or dropping an object that
has been collected earlier) or to change its propension to do
something (i.e. to collect more objects or to go past a given
obstacle in the environment). AIS actions are followed by
two arguments, the first indicating the internal state vari-
able to change and the second indicating the variable’s new
value.

2.2 Grammatical evolution
GESwarm is based on Grammatical Evolution (GE) [?].

GE is related to Genetic Programming [?] (GP), which deals
with the automatic synthesis of computer programs using
artificial evolution. The main difference between the two is
that GE employs a grammar to evolve programs for arbi-
trary languages [?] as opposed to GP which is bound to a
specific language such as LISP. GESwarm uses GE and a for-
mal grammar to evolve a set of rules R as the ones described
in Section 2.1. The GESwarm grammar is the following:

S → R (1)

R → R R|R (2)

R → P B A (3)

P → P P|ε (4)

B → B B|ε (5)

A → A A|A (6)

P → Pname == true|Pname == false (7)

B → Bname (8)

A → AB |AIS (9)

AB → p = 〈value〉,Bname (10)

AIS → p = 〈value〉, ISname = 〈new value〉 (11)

To understand this grammar, recall that formal grammars
are made of production rules, each consisting in a left-hand
side and a right-hand side separated by the symbol“→”. The
left-hand side contains one non-terminal symbol. The right-
hand side contains one or more terminal or non-terminal
symbols that can be either concatenated or separated by
the special “or” (“|”) symbol. The difference between termi-
nal and non-terminal symbols is that non-terminal symbols
are further expanded by a production rule whereas terminal
symbols are not.

The first rule of a formal grammar always expands the
special non terminal S. In our case, S is expanded in the
non-terminal R that represents a set of rules (Expansion 1).
In the following expansions, each non terminal can be ex-
panded to either groups of non-terminal and terminal sym-
bols or to groups of terminal symbols alone. The grammar
has completed producing a valid string only when all non-
terminals have been expanded. We now explain how the
GESwarm grammar can produce valid swarm robotics be-
haviors.

The production rule 2 denotes a list-type expansion: it
says that R can only be expanded as a list of rules R of
arbitrary length. To produce a list of n rules, one applies
the R R part of the rule recursively n− 1 times, and lastly
expand R into the sole terminal R, thus terminating the list.
Production rule 3 defines that a rule R is a set of precondi-
tions P followed by a set of behaviors B followed by a set of
actions A. Production rules 4, 5 and 6 are also list-type
expansions that correspond to P, B and A being lists of pre-
conditions (P), behaviors (B) and actions (A), respectively.
Since both preconditions and behaviors can be empty, ε is
interpreted both as the empty list, and the end of a list.
Production rules 7 and 8 only produce terminal symbols:
they describe what a precondition (a logical evaluation of a
given precondition variable Pname) and a behavior (a behav-
ior variable Bname) are. Production rule 9 expands to one of
two possible non-terminal symbols, thus selecting between
behavior change actions (AB) and internal state change ac-
tions (AIS). Finally, production rules 10 and 11 describe
what these two action are. In both cases, the first part of
the expansion sets the value of the probability p associated
with the action to the provided real number 〈value〉. Fir
AB , this assignment is followed by the behavior Bname to
change to, while for AIS it is followed by an internal state
assignment.

GESwarm uses the above grammar to generate candidate
solutions that can be evolved via GE. Each of the initial

set of candidate solutions is produced from the grammar
by successively selecting a random production rule to apply
(starting from S) until a valid string has been produced. In
Section 3.1 we give more details on the experimental setup
used for GE and for the swarm robotics simulations.

3. EXPERIMENTS WITH EVOLUTION OF
FORAGING

In this section, we show how GESwarm can be used to suc-
cessfully generate swarm robotics collective behaviors. As a
case study, we use GESwarm to evolve a collective foraging
behavior.

3.1 Experimental setup
We now explain the setup used to carry out the experi-

ments, by describing the swarm robotics experimental setup
(Section 3.1.1) used for executing the foraging simulations
and the configuration of the evolutionary algorithm (Sec-
tion 3.1.2).

3.1.1 Robotic setup
We consider a foraging scenario in the arena depicted in

Figure 1a. A swarm of N robots has to collect items from
a region of the arena that we call source and bring them to
another region that we call nest. In the source, 5 objects
are placed. New objects are generated at a random loca-
tion every time one is picked up by a robot, so that there
are always 5 items present at the source. A light source is
located far north, beyond the borders of the arena and al-
lows robots to execute the phototaxis and anti-phototaxis
behaviors necessary to navigate the arena.

The experiments were carried out using the ARGoS sim-
ulator [?]. ARGoS is an open-source simulator1 capable of
simulating up to tens of thousands of robots in real time
by exploiting modern multi-core computers and a plugin-
based architecture. The robot involved in the experiments
is a simulated version of the foot-bot robot [?], which is a
differential-drive, non-holonomic, mobile robot. The physi-
cal foot-bot robot is depicted in Figure 1b.

We implemented the following low-level behaviors that,
recombined by GESwarm, can produce the desired higher
level foraging strategy. These behaviors exploit only the
sensors and actuators shown in Figure 1b. The output of
these behaviors are vectors that point to a target direction.

BPHOTOTAXIS This behavior only uses the light sensor. The
output vector points toward the direction with the
highest perceived light intensity.

BANTI−PHOTOTAXIS This behavior also only uses the light
sensor. The output vector points toward the lowest
perceived light intensity.

BRANDOM WALK This behavior doesn’t use any sensor. The
output is a random unit vector that remains constant
for a random amount of time.

These output vectors are post-processed by adding an ob-
stacle avoidance vector. The obstacle avoidance vector is
computed using two sensors: the proximity sensors for sens-
ing the walls and the range and bearing sensors to sense
other robots. The obstacle avoidance vector points away

1http://iridia.ulb.ac.be/argos

(a)

Range and bearing

Gripper

Light and proximity sensors

Wheels and ground sensors

(b)

Figure 1: Experimental setup. (a) A snapshot of the ARGoS simulator that explains our experimental setup. (b) The real
foot-bot robot and the sensor/actuators that were used.

R1: If not holding an object and not at the source, go to the source
P1 PON SOURCE == false PHAS OBJECT == false
B1 ε
A1 AB p = 1 BPHOTOTAXIS

R2: If arrived at the source and not holding an object, start looking for objects
P2 PON SOURCE == true PHAS OBJECT == false
B2 BPHOTOTAXIS

A2 AB p = 1 BRANDOM WALK

AIS p = 1 ISWANT OBJECT ← true

R3: If holding an object, go back to the nest
P3 PHAS OBJECT == true
B3 BRANDOM WALK BPHOTOTAXIS

A3 AB p = 1 BANTI−PHOTOTAXIS

R4: If arrived at the nest and still holding an object, drop it and start random walk
P4 PON NEST == true PHAS OBJECT == true
B4 BRANDOM WALK BANTI−PHOTOTAXIS

A4 AB p = 1 BRANDOM WALK

AIS p = 1 ISDROP OBJECT ← true

Table 1: The hand-coded behavior

from the aggregate of the relative positions of all sensed ob-
jects. The integrated output vector is then used to obtain
the two output speeds which are then applied to robot’s
wheels, as in [?].

Additionally, a combination of ground and light sensor
are also used to detect whether the robot is on the source,
on the nest or somewhere else. This information is used to
evaluate the preconditions PON SOURCE and PON NEST used
in the rule set. Finally, a virtual simulated gripper sensor
is used to let the robot pick-up and drop objects. When
a robot picks-up an object, the precondition PHAS OBJECT

evaluates as true.
To evolve the behavior, we use 4 robots. When assesing

scalability and flexibility, we use up to 20 robots. The total
allotted time for the foraging task is 5000 simulated seconds.

3.1.2 Evolutionary setup
We use an existing library called GEVA [?] for GE. GEVA

maps the GESwarm rules into strings of integers. We exe-
cute a total of 10 evolutionary runs. Each evolutionary run
lasts 1000 generations and involves 100 individuals. Since

swarm robotics simulations are stochastic, each individual
is evaluated 3 times. We use a single-point crossover with
probability 0.3 and a mutation probability of 0.05. Crossover
and mutation are applied directly to the string of integers
representing the rules. We choose a generational-type of
replacement with 5% elitism. Generational-type is used in-
stead of steady-state type because it allows for massive par-
allelization of the simulations on a computer cluster. We
use roulette-wheel selection, that is, the probability that an
individual is selected for reproduction (which may involve
mutation and crossover) is proportional to its fitness rela-
tive to the fitness of all individuals.

The fitness function used is simply the total number of
objects collected during one simulation. The same quantity
was also used to validate the evolved behavior (Section 3.2.1
and Section 3.2.2).

3.2 Results
We now analyze the ten evolved behaviors (Section 3.2.1)

against the hand-coded behavior shown in Table 1, and

(a)

20

40

60

80

100

120

Collective behavior
HC EVO 1 EVO 2 EVO 3 EVO 4 EVO 5 EVO 6 EVO 7 EVO 8 EVO 9 EVO 10

Performance for different evolved behaviors and comparison with handcoded

To
ta

lf
oo

d
at

ne
st

* * * * * * *

(b)

Figure 2: Results obtained with GESwarm used to evolve a foraging behavior. (a) shows the value of the fitness of the best
individual found so far as a function of generation time, for the the 10 evolutionary runs. A good foraging behavior was
evolved in all runs but one. (b) shows the results of evaluating 50 times all evolved (EVO X) and the hand-coded (HC)
behaviors. We report the total number of collected objects in the allotted time. The dashed horizontal line represents the
baseline performance (i.e. the mean performance of the HC behavior). Seven out of the ten evolved behaviors outperform
significantly (p− value < 0.001) the hand-coded behavior, denoted by *.

further analyze EVO 8, the best evolved behavior (Sec-
tion 3.2.2).

3.2.1 The evolved behavior
In Figure 2a we show the fitness of the evolved behaviors

as a function of the generations. For each run, we report the
fitness of the best individual obtained so far. The behaviors
obtained by the end of the runs are all functional solutions
for the foraging problem, as can be seen by their ability
to successfully collect a significant number of objects. This
highlights a strength of GESwarm: all evolutionary runs
obtain a functional behavior.

We compare the performance of all evolved behaviors against
the hand-coded behavior. We evaluated the performance of
all 10 evolved behaviors (EVO X) and the hand-coded be-
havior (HC) 50 times each. These experiments were per-
formed in the same environmental setting used in the evolu-
tionary runs. Results are reported in Figure 2b. Here, HC is
significantly (p− value < 0.001) outperformed by seven out
of the ten evolved behaviors, has performance comparable
to two other behaviors, and performs better than only one of
them (EV O6). In this latter case, the evolutionary process
could not get past a local optimum (Figure 2a). However,
this happened only in one out of the ten cases.

3.2.2 Scalability and flexibility analysis
We further analyze the performance of the best evolved

behavior (EVO 8, reverse-engineered in Table 2). We ex-
ecuted two sets of experiments. In both sets, we analyzed
the performance of the system with larger swarm sizes com-
pared to the one used during evolution (scalability analysis).
In the first set, we keep the robot density the same (≈ 0.23
robots/m2), increase the environment width and the object
availability accordingly. In the second set, we increased the
robot density by a factor of 4 (≈ 0.9 robots/m2) and re-
duced the object availability at the source by a factor of 2
(flexibility analysis). Both the width and the length of the
environment had to be modified to achieve this. As a side

effect, the overall performance of the scalability and flexi-
bility analyses cannot be directly compared. For statistical
strength, 50 runs for each setting were executed.

Figure 3a and Figure 3b summarize the results of the scal-
ability and flexibility analyses, respectively. The first thing
that can be noticed is that the best evolved controller contin-
ues to outperform the hand-coded one in all cases. Evolved
behaviors generalize well to different conditions other than
the ones used during the evolutionary process. Further ob-
servations can also be made: in both sets, and for both be-
haviors, performance scale approximately linearly with re-
spect to the swarm size. This is also true for experiments
with higher density of robots (Figure 3b), showing that both
behaviors are not strongly affected by robot-to-robot inter-
ference and decreased availability of resources.

4. DISCUSSION AND RELATED WORK
Automatic design methods have been, for decades, the

holy grail for roboticists and swarm roboticists. Automatic
generation of behaviors is very useful with tasks that have
not been completely defined in advance or that can change
over time. Furthermore, they are even more useful in swarm
robotics, as they could ease the derivation of microscopic be-
haviors and interaction rules given the macroscopic objec-
tive. While significant progress has been achieved in auto-
matic design methods, there is still no consensus on which is
the best method that can be used within the swarm robotics
setting. We classify automatic design methodologies in two
main frameworks: reinforcement learning and evolutionary
robotics.

In Reinforcement Learning (RL), a single agent or robot
learns a behavior by trial-and-error interactions with the
environment and receiving rewards and punishment from it.
An elegant and unified mathematical framework has been
developed [?]. In the multi-agent and multi-robot case, how-
ever, less success has been reported. A review of such stud-
ies was conducted in [?] and is outside the scope of this

R1: The switch to random walk for object exploration is probabilistic and can happen any time
P1 ε
B1 BPHOTOTAXIS

A1 AB p = 0.05 B ← BRANDOM WALK

R2: If going to the nest and reached the nest, drop any object and go back to the source
P2 PON NEST == true
B2 BRANDOM WALK BANTI−PHOTOTAXIS

A2 AB p = 1 BPHOTOTAXIS

AIS p = 1 ISDROP OBJECT ← true

R3: Whenever holding an object, the robot should go back to the nest
P3 PHAS OBJECT == true
B3 BRANDOM WALK BPHOTOTAXIS

A3 AB p = 0.1 BANTI−PHOTOTAXIS

R4: The default action is to go to look for objects at the source
P4 PON NEST == true PHAS OBJECT == true
B4 BRANDOM WALK BPHOTOTAXIS

A4 AB p = 1.0 BPHOTOTAXIS

AB p = 0.001 BANTI−PHOTOTAXIS

Table 2: The best evolved behavior EVO 8. Evolved rules can be easily explained by looking at them.

150

200

250

300

350

400

450

500

550

600

Behavior: Number of robots
HC: 5 Evo: 5 HC: 10 Evo: 10 HC: 20 Evo: 20

Scalability analysis

To
ta
lf
oo
d
at
ne
st

(a)

200

300

400

500

600

700

800

900

1000

Behavior: Number of robots
HC: 5 Evo: 5 HC: 10 Evo: 10 HC: 20 Evo: 20

Flexibility analysis

To
ta
lf
oo

d
at

ne
st

(b)

Figure 3: Further analysis of the best evolved behavior. Comparison between the best evolved behavior, Evo 8, against the
handcoded behavior. Experiments were performed with 5, 10 and 20 robots. In (a) the density of robots was kept the same
to the one where the controller was evolved. In (b) we show results executed in a slightly different environment, in which the
robot density is increased and object availability is decreased. As it can be seen, EVO 8 always outperforms the handcoded
behavior.

paper. However, we believe RL is not yet mature to be used
in swarm robotics. A swarm robotics problem, in fact, can
hardly be seen as a RL problem. The user tackles a task at
the macroscopic level, but reinforcement learning processes
take place at the microscopic level. Hence, the main issue is
the spatial credit assignment, that is, the decomposition of
the global reward into individual rewards [?]. Some works
addressed this issue via experiments with few robots (2 to
4), using communication or signaling to share the reward [?,
?].

Evolutionary robotics (ER) has maybe received more suc-
cess than RL in swarm robotics. This might be due to the
different way in which credit assignment is done. In fact,
the majority of the works consider homogeneous swarms
(all robots use the same individual behavior) and the fit-
ness function evaluates the performance of the entire swarm.
Some information about learning dynamics might be lost in
this way, but the spatial credit assignment problem is also

reduced. Although this is the most common approach, some
authors discussed other different ways in which artificial evo-
lution in swarms can take place [?]. They introduced two
taxonomies, one categorizing works according to how selec-
tion takes place (individual-level vs swarm level) and the
other one according to how the swarm is composed (homoge-
neous vs heterogeneous). For comparison, the experiments
considered in this paper utilizes swarm-level selection and
homogeneous swarm composition, albeit there is nothing in
GESwarm that restricts it to this particular category.

In evolutionary swarm robotics, several principles and col-
lective behaviors have been studied. We here summarize
some of the most representative work in the field. In [?], the
authors evolved successfully coordinated motion of robots
capable of assembling to each other. The evolved behav-
ior was ported to real robots, where they showed that four
physically-connected robots could navigate together, explore
a complex environment and avoid obstacles. In [?], the au-

thors considered the aggregation collective behavior. They
performed experiments both with artificial evolution and
with probabilistic hand-coded controller, showing that the
former can outperform the latter. In [?], the authors evolved
both solitary and collective object transport behaviors. They
showed that most of the times evolution was favoring a col-
lective transport that involved robots assembling to each
other. In [?], the authors successfully evolved a social learn-
ing behavior, in which the robots were able to switch be-
tween two behaviors either via environmental stimuli or via
communication among them. The evolution of communi-
cation was also considered in [?], in which the emergence
of signaling is needed in order for the robots to categorize
two types of environments. In [?], the authors success-
fully evolved solitary and cooperative foraging also using
real robots. The task involved small objects, that could be
pushed by single robots, as well as big objects that required
at least two robots to be moved. In [?], the authors used
an evolutionary algorithm to generate collective behaviors
for a team of robot football players, using fully connected
recurrent neural network as a behavioral model. In [?], the
authors evolved a collective foraging behavior that relies on
very simple sensing mechanisms. The robots could not sense
object unless in close proximity, but engaged in a dynamic
chain behavior having them following each other and creat-
ing a chain connecting the source of objects to the nest. The
formed chain was also dynamically changing shape when the
object source was let free to move in the environment. In [?]
the authors evolved an aggregation collective behavior hav-
ing robots aggregating to different shelters. The evolved be-
havior was compared to a model of collective decision mak-
ing displayed by cockroaches based on differential equations.

The evolutionary robotics work described above all uti-
lized artificial neural networks (ANNs) as the representation
of the microscopic behavior of each robot. The advantage
of ANNs is their generality, in the sense that in principle
they do not bias the behavior to a particular class, but the
behavior is only restricted by the size of the neural network
and by whether it’s recurrent or not. Differently from non-
recurrent ANNs, recurrent ANNs include weights connecting
output neurons back to input neurons, thus encoding inter-
nal memory. In swarm robotics, purely reactive, memory-
less behaviors are often (although not always) enough to
guarantee self-organizing properties (such as [?]), and this
justifies why non-recurrent ANNs are more often used com-
pared to recurrent ANNs.

The main drawback of ANNs is their difficulty in being re-
verse engineered and analyzed. Only few studies have tried
to attempt this step, in general with very simple collective
behaviors [?] or small neural networks [?]. In addition to
this, the size and topology of the neural network is often
fixed a-priori, with few recent exceptions [?]. To overcome
these difficulty, few other studies followed an alternative ap-
proach in which an alternative behavioral representations is
used instead of ANNs. For instance, the authors of [?] used
evolutionary computation to tune the parameters of a micro-
scopic behavior represented using artificial virtual physics, in
order to perform obstacle avoidance with a swarm of robots.
Instead, in [?] the authors used artificial evolution to find
finite state machines used to evolve collision avoidance and
gate trespassing in a swarm of robots. GeSwarm can be
placed in the same context of these latter two studies: it
represents a further effort in finding an alternative repre-

sentation that is reverse-engineerable and suitable for evolv-
ing collective behaviors for swarm robotics. Additionally, in
GESwarm the size of the representation is not fixed in ad-
vance, as an arbitrary number of rules made of an arbitrary
number of components can in principle evolve.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented GESwarm, a new method for

the automatic synthesis of swarm robotics collective behav-
iors that can be reverse engineered. GESwarm uses artifi-
cial evolution to combine a set of low-level individual be-
haviors into more complex strategies potentially capable of
self-organization. We presented an experimental validation,
where GESwarm was used to successfully evolve ten forag-
ing behaviors out of the ten performed evolutionary runs,
whereby 7 out of 10 outperformed a hand-coded foraging
behavior, 2 performed comparatively and only 1 performed
worse. This showed that GESwarm is capable to generate
functional collective behaviors with a high degree of success.
The best evolved behavior was further analyzed, showing
that it could generalize well to different conditions such as
increased number of robots and increased robot density.

From the swarm robotics perspective, it can be argued
that the two main behavioral representations used in the lit-
erature are finite state machines and virtual physics-based
design [?]. The work presented in this paper represents a
significant step forward for achieving automatic design of
swarm robotics collective behaviors. In fact, similarly to [?],
behaviors evolved with GESwarm are equivalent to prob-
abilistic finite state machines and can self-organize into all
class of behaviors encoded via finite state machines. Further
research directions involve extensions of GESwarm such as
the possibility to evolve: rules that represent virtual physics-
based interactions; rules that fully exploit the internal state
of the robots by allowing for behaviors that adapt to chang-
ing environmental conditions; additional real-valued param-
eters used to further characterize preconditions and behav-
iors. Such extension would allow to evolve, we believe, al-
most or all the swarm robotics collective behaviors that so
far have only been developed by hand.

6. ACKNOWLEDGMENTS
This work was partially supported by the Vlaanderen Re-

search Foundation Flanders (Flemish Community of Bel-
gium).

